Chapter 6 - Prototyping, RAD & Agile Modelling
Prototypes

Kinds of information sought in prototypes

• User reactions gathered via observation, interview and feedback sheets (questionnaires)

• User suggestions

• Innovations (new capabilities not thought of beforehand)

• Revision plans on what/which department to prototype next

Kinds of prototype

• Patched-up prototype--> Breadboarding

° Patched together, working model of an (otherwise microscopic) integrated circuit

° In IS: A working model that has all the necessary features but inefficient (in retrieval and storage of infomation, for example)

• Non-operational prototype

° e.g. Full scale car model used in wind tunnel tests

° In IS: When the coding required by applications is too expensive to prototype--> Prototype input and output only

• First of a series prototype--> Pilot study

° Useful when many installations of the same IS are planned

° Also used for Rapid Application Development (RAD)

• Selected features prototype

° e.g. shopping mall that opens before the construction of all shops is complete

° e.g. missing menu items in software

° If prototyped features are successfull, they get incorporated into the final system directly.

Substituting prototypes for systems development life-cycle

Advantages:

• Fast

• Costs less (analyst’s time)

• Potential to change the system early in its development

• Opportunity to stop developing undesirable systems

• Tangible model that will help in determing user requirements and address users' needs and expectations more closely

• Can cope with changes in user requirements that evolve during systems study

Disadvantages

• Managing the project itself is difficult

° Time

° Need for multiple feedback

• Premature system, because problem or opportunity is not properly understood

• Users may adopt an incomplete system before it is completed

• May produce a system good for certain users but not for others

Therefore: Use it as an additional data gathering method, when the system is

• Based on a new concept (to be solved in a non-traditional way)

• Rests on uncertain and unstable grounds (rapidly changing environment)

• Addresses an unstructured or semistructured problem

First step--> Estimate costs involved in building a module of the system

Guidelines for developing a prototype;

• Work in manageable modules. Start with more important ones. Make sure they are not highly interdependent.

• Build the prototype rapidly

• Modifiy the prototype in successive iterations-->It has to be modular in nature and flexible and suitable for adaptation

• Stress the user interface

• User is the king/queen--> User feedback and contribution is a must. It is the essence of prototyping. Prototype is there to be criticized. Do not defend it. There are three main ways a user can help.

° Experimenting with the prototype-->Important part of RAD

° Giving open reactions to the prototype

° Suggesting additions or deletions from the prototype.

RAD (Rapid Application Development)

(Like prototyping) Aims to shorten the time needed in SDLC. It is a specific implementation of prototyping, useful especially in e-commerce, web based environments.

Phases of RAD

• Requirements planning phase: Identify objects and information requirements with involvement of users from different organizational levels. Stay focused on business goals while solving business problems.

• RAD Design Workshop: Actual development phase; Unites James Martin's user design and construction phases. -->Active and intense participation needed.

• Implementation phase: (Martin's cutover phase). New system runs in parallel with the old, tested in real life, users are trained and organizational procedures are changed before cutover occurs.

RAD vs. SDLC

• SDLC takes more methodical, systematic approach that ensures completeness and accuracy with an aim to create systems well integrated into standard business procedures and culture.

• RAD is rapid, dynamic, based on a visual model representation, not just a conceptual one on paper. Requires a lot of user involvement--> Therefore change is welcomed.

When to use RAD

• Team includes experienced programmers and analysts

• Business requires rapid development

• Novel e-commerce application--> Need for acting before competitors

• Users are sophisticated and highly engaged with the organizational goals of the company

• Try to integrate into SDLC as an incisive and targeting tool to update, improve, or innovate selected portions.

Disadvantages

• Documentation may be overlooked

• Attention to detail is bypassed

• If programmers are not experienced in using RAD tools, there will be a steep learning curve.

Use RAD as an additional tool to SDLC

Agile Development

= Project management (doing things on the fly = Kervan yolda düzelir.)

Based on values, activities, principles and core practices

Control variables (important resources)

• Time

• Cost

• Quality

• Scope

Activities

• Coding

• Testing for functionality, performance, conformance

• Listening to customers and other programmers and analysts

• Designing a system that is functional, aesthetic, maintenable

Agile development requires a balance between 4 control variables and 4 activities.

[image: image1.png]Figure 3.14 When the four resource control variables are in balance with the four
activities, an XP project will likely meets its goals.

the four o bAa"%
Onitro| four
e - et
Usegg
o %

V4 \a

Values

• Communication (among team members)

• Simplicity

• Feedback

• Courage (being adventurous on trying new concepts and methods)

Core practices

• Short releases (time management is very important)

• 40 hour week at most (quality factor)

• Hosting an onsite customer (JAD) [scope]

• Using pair programming

Development Process

Continuous switching between
• modelling (e.g. workflow diagrams)
• prototyping

through an evolutionary approach via incremental changes in sucessive iterations (Kervan yolda düzelir.)

AD is based on the interaction of these values, activities, resources and practices.

Principles (The book lists different items under this heading)

• Dynamic

• Context sensitive (ihtiyaca özel)
• Scalable (gerektikçe şekillendirilebilir)

• Evoluionary

Strategies to improve efficiency of knowledge works

1. Reduce interface time and errors

2. Reduce process learning time and dual processing losses

3. Reduce time and effort to structure tasks and format outputs

4. Reduce non productive expansion of work

5. Reduce data and knowledge search and storage time and costs

6. Reduce communication and coordination time and costs

7. Reduce losses from human information overload

How they are used in structured methodology and agile development (fig. 6.12 on p. 198):

[image: image2.jpg]Strategies for Improving
Efficiency in Knowledge Work

Implementation Using
Structured Methodologies

Implementation Using
Agile Methodologies

Reduce interface time and errors

Reduce process learning time and
dual processing losses

Reduce time and effort to structure:
tasks and format outputs

Reduce nonproductive expansion
of work

Reduce data and knowledge search
and storage time and costs

Reduce communication and
coordination time and costs.

eduuce losses from human
information overload

Adopting organizational standards
for coding, naming, etc.; using forms

Managing when updates are released
Sothe user does not have 1o learn and
use software at the same time

Using CASE tools and diagram:
ode witten by other programmers

Project management; establishing
deadiines.

Using structured data gathering
techniques, such as interviews,
obsenvation, sampling.

Separating projects into smaller
tasks; establishing barriers

Applying fitering techniques to
shield analysts and programmers

Adopting pair
programming

Ad hoc prototyping and
rapid development
Encouraging short
releases.

Limiting scope in each
release.

Allowing for an onsite.
customer

Timeboxing

Sticking to a 40-hour
work week

The part on agile development gives ideas on how they can be used for doing things on the fly (kervan yolda düzelir).
Risks inherent in adopting organizational innovation

1. Organizational culture

2. Timing

3. Cost

4. Client's reactions (some users do not want to guinea pigs for systems "experiments" with uncertain outcomes

5. Measuring impact: The book says the impact of agile development is unknown. (They should come to Turkey to see its impact.)

6. Individual rights (of programmers and analysts)

PERSONAL COMMENTS OF THE INSTRUCTOR

Roles

	AD (Design+Application)
	JAD (design only, including information requirements analysis)

	Programmer
	-

	Customer
	users

	Tester
	-

	Tracker
	IS analyst and scribe

	Coach
	session leader

	Consultant
	observer

	Big boss
	senior executive

Steps

	AD
	JAD

	Exploration
	information requirements analysis

	Planning
	analysis

	İterations to the 1st release
	design

	Productionizing
	development and documentation

	Maintenance
	testing and maintenance

	-
	implementing and evaluation

SUMMARY

• JAD-->design only

• AD --> design and application [mainly project management]

• Prototype-->user inteface (basically)

• AD -->coding

Alternative methods (no further details about this. This is all that is listed on p. 20)

• Prototyping (different from the concept taught in the book)

• ETHICS; Sociotechnical method

• Project champion approach (like JAD)

• Soft systems methodology (via pictures and ideographs)

• Multiview

Disadvantages of agile development

· No proper planning--> improvised: You cannot always estimate where you will end-up.

· No proper documentation (true for prototypes, too)

· Needs an organizational culture based on change ("change is good" --> "change for the sake of change")

· Loss of control

Maintenance costs have become huge (48-60% at the moment. It will become worse in the future). (fig 1.5 on p. 14)
[image: image3.jpg]Major Changes
in Both Business
and Technology

Postinstallation pinor Ghanges

ugs Due to Bugs and
Enhancements

Systems

Amount of Development

Resources
Consumed,
Time and
Money

Installation
Day

Main motive behind agile development: Problems created by outgrowing (saving the day = günü kurtarma telaşı)

Solution: Divide and rule!

· Country level: Provinces, autonomous regions

· Wars: Large armies have been replaced by guerilla groups.

· Companies: Large companies have been replaced with smaller enterprises --> Outsourcing

· In manufacturing: Assemly line have been replaced by small assembly groups which decide on the division of labour within themselves. (Japanese model introduced in the 70s).

· Software development: First example was Apple's AppleScripts, current example is web applications like Google apps.

· Management style:
· Inıtial phase: Distribution of authority; management by exceptions.
· Current phase: Flattening of organizations. Technology have made it relatively easier to manage large organizations by enabling managers to control large groups of employees.
[image: image4.png]

However, at the point where we have reached, things have "reached their natural limits". It cannot go any further with this huge and heavy body. Think for example the Ottoman Empire at the time of the Vienna siege, or the Chinese Empire.

Strategic management requires a constant change. However, "change for the sake of change" philosophy is wrong. A better approach would be "change in line with needs".

ERP applications belongs to the growing stage. Once growing reaches natural limits, control will be lost. (Current success level for ERP projects is 20%.)

The next stage perhaps might be smaller pieces or modules of application software that intergrate (or at least interact) with each other over standard data interchange formats. These can be coordinated by a large company as in the case of: Open source software, Facebook applications or Google applications OR a consortium as in the case of Workflow Management Coalition.

The difficulty is being able to see the larger picture.

· Leave the smaller pieces autonomous e.g. the putting out phase of early capitalism. (Distribution of authority, management by exceptions)
· Maintain central control: Centrally controlled decentralized system (flattening of organizations)
· If any of the units become unsuccessful or get out of control:

· Crush

· Decompose

· Re-farm

· Use agile development methods within the (small) units. These units might be project based, to be decomposed once the project is over, and re-established under a different combination for another project.
At this stage, some questions to ask would be:

· How will/should these teams be established

· How are they going to acquire the resources they need

· from the central authority?

· from other teams?

· from external sources?

· from their own sources

· How will documentation be kept?

· Assuming a member of the team kept the documentation and uploaded it to a central knowledge base, how are they going to be discovered and used (refer to research by Lagoze)?

· What happens if nobody keeps any documentation? (Is there such a possibility?) Are we going to assume it is not worth knowing?

